您的位置: 主页 > 行测技巧讲解:古典概率那些事儿

行测技巧讲解:古典概率那些事儿

  在行测数量关系考察中,古典概率问题让很多同学为之头疼,也是大家在考试时的痛点与难点,今天中公教育专家就带着大家学习一下,让大家再遇到这些问题能够很好地解决。

  古典概率:如果一次试验中共有n种等可能出现的结果,其中事件A包含的结果有m种,

  基本事件具有有限性:基本事件不能够无限大,例如在直线上打点,打到点A的概率就不可以用古典概率计算。

  基本事件的发生具有等可能性:如闭着眼睛在口袋中取大小和形状都相同的球,取到每一个球的概率都是相同的,是等可能的。

  古典概率的特征是非常重要的,它可以帮助我们当遇到题目的时候,更好的理解如何应用古典概率的公式进行计算,同学们一定要好好理解并且掌握。

  利用排列数和组合数帮助解决:当遇到比较复杂的概率问题时,我们可以借助排列数和组合数帮助我们解决。

  逆向思维法:当正面思考分类特别多的时候,我们可以用逆向求解,用“1-其对立面的概率”进行计算。

  事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

  例题1:桌子上有光盘15张,其中音乐光盘6张、电影光盘6张、游戏光盘3张,从中任取3张,其中恰好有音乐、电影、游戏光盘各1张的概率是:( )

  中公解析:这是一道的典型例题,从15张光盘中任取3张,取法有C(15,3)=15×14×13/(3×2×1)=455种取法,恰好一张音乐、电影、游戏光盘的取法有C(6,1)C(6,1)C(3,1)=6×6×3=108种取法,故概率为108/455。故答案为C。

  例题2:在盒子中有十个相同的球,分别标以号码1,2,10,从中任取一球,求此球的号码为偶数的概率。

  中公解析:根据公式P=m/n,首先要搞清楚什么是满足条件的情况数(m),什么是总情况数(n),满足条件的情况数就是号码为偶数,总情况数就是任取一个球,分子上就是偶数的情况数,应该是5,分母上取一个球一共有多少种可能呢,是有10种可能,所以它的概率就是5/10,就是1/2。

  例题3:一个袋子中装有编号为1到9的9个完全相同的小球,从袋中任意摸出一个小球,然后放回,再摸出一个,则两次摸出的小球的编号乘积大于30的概率是:

  中公解析:摸球两次总的情况数为9×9=81,两次摸出的小球的编号乘积大于30的情况有:(1)两次的编号为6到9时,有4×4=16种;(2)一次编号为5,另一次编号为7到9,有3×2=6种;(3)一次编号为4,另一次有8和9,有2×2=4种;则满足条件的共有16+6+4=26种,所求概率为26/81。

  中公教育专家希望各位考生能熟练记忆概率问题相关概念,利用好对应公式,在考试中顺利拿下这个考点。

上一篇:当代华尔兹之王安德烈·瑞欧古典乐也可以很流行
下一篇:刘嘉玲和刘晓庆豪宅:装修奢华古典随便一件家

您可能喜欢

回到顶部